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KLASIFIKASI SET DATA TATASUSUNAN MIKRO 

MENGGUNAKAN RANDOM FOREST 

ABSTRAK 

Teknologi DNA tatasusunan mempunyai keupayaan untuk memerhati lebih 

daripada ribuan nilai ekspresi gen dalam satu chip. Ia juga mendatangkan kebaikan 

dalam bidang perubatan kerana ia dapat membantu dalam pengesanan mutasi genetik 

dan penyakit. Kewujudan satu model yang baik dapat meramalkan kelas penyakit 

yang tidak diketahui sebelumnya. Untuk mendapatkan satu model yang baik, kita 

mesti terlebih dahulu mmperolehi keputusan klasifikasi yang baik. Namun, 

kebanyakan data tatasusunan mempunyai bilangan gen yang melebihi bilangan 

sampel. Oleh itu, untuk mendapatkan keputusan klasifikasi yang baik, bukan sahaja 

pemilihan jenis klasifikasi penting tetapi juga ciri penting dalam gen yang dipilih. 

Dalam penyelidikan ini, kita telah mencadangkan satu cara dinamakan ‘stair-line’ 

dalam pemilihan gen yang penting untuk mengurangkan kesan kurtosis yang wujud. 

Klasifikasi yang digunakan ialah ‘Random Forest’. Lima set data tatasusunan dengan 

bilangan gen dan sampel yang berlainan telah digunakan untuk mempamerkan 

keupayaan cara ‘stair-line’ yang dicadangkan. Cadangan ini telah memperbaiki 

peratusan kebetulan dalam keputusan klasifikasi dan pada masa yang sama telah 

mengurangkan kesan kurtosis yang wujud dalam gen. Selain itu, pengklasifikasi 

yang lain juga telah dipertimbangkan dan keputusan yang diperolehi telah 

dibandingkan dengan keputusan yang diperolehi dengan  menggunakan ‘Random 

Forest’. Secara kesuluruhan, keputusan yang diperolehi dengan menggunakan 

Random Forest adalah lebih baik jika dibandingkan dengan keputusan yang 

diperolehi dengan menggunakan klasifikasi lain.  
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CLASSIFICATION OF MICROARRAY DATASETS USING 

RANDOM FOREST 

ABSTRACT 

DNA microarray technology has enabled the capability to monitor the 

expressions of tens of thousands of genes in a biological sample on a single chip. 

Medical fields can benefit from microarray data mining as it helps in early detection of 

genes mutation and diagnosis of disease.  A well built model can be used to predict 

unknown disease classes in a test case. Prior to a well built model is to achieve good 

classification results which rely very much on the classifiers that are being used. 

However, in most microarray data, the number of genes usually outnumbers the number 

of samples. Thus, it is often not just selecting the type of classifier that is essential but 

also the features looked in selecting significant genes that will contribute to good 

classification results. Genes selection also varies from study scope and depends on the 

criteria researchers are looking at. In this study, we propose a stair-line method to select 

significant genes to reduce the effect of kurtosis found among the genes. Classification 

is then done using Random Forest. Five microarray datasets with different number of 

genes and samples are used to demonstrate the effectiveness of this method. This 

method improves the percentages of correct classification and at the same time reduces 

the effect of kurtosis in the genes expression values. Other conventional classification 

schemes are also looked at as a comparison to Random Forest and it is shown that the 

latter is one classifier that is more superior to the others. In short, Random Forest 

managed to give a competitive result in classifying genes correctly as Random Forest 

performed consistently well on all datasets. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Knowledge Discovery in Database 

Knowledge discovery in databases (KDD) is the analysis of data. It is the 

practice of sorting through data to identify pattern and to establish relationship. The 

main reason in doing so is to discover previously unknown information that might be 

potentially useful in the future. With the availability of advanced mining tools which use 

artificial intelligence, statistical methods or pattern recognition plus the availability of 

the abundance of data, people are able to perform data mining on various sequences to 

achieve various outcomes.  

 

There are various methods in which one can adopt to perform data mining. These 

methods are often recognized as the data mining parameters. Some of the often used 

methods which include the following: 

Association - looks for patterns where one event is connected to another event  

Sequence or path analysis – looks for patterns where one event leads to another later 

event 

Classification – finding a model that describes data classes so as to use the model for 

future prediction 

Clustering – finds and visually documents groups of fact that is not previously known 

Predictions or Forecasting – discovers patterns that can lead to predictions about the 

future (Olson and Delen, 2008) 
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1.2 Microarray Data Mining 

Genomic study has been of great interest over the past years. Genomic study 

involves gene analysis tasks which are carried out to identify and learn characteristics of 

genes which can lead to many hidden potential information. One of the potential 

information that has been looked into by the bioinformatics community is the 

identification of diseases. In the past, genomic study was done by looking at one gene at 

a time. This technique is not only tedious but also has a potential of lack of information 

because it is only capable of generating limited results and at a time. Now, with the 

advancement of microarray technology, this can be done very easily.  

 

Microarray technology has given researchers the opportunity to perform genomic 

study by looking at thousands of genes simultaneously instead of just one gene at a time. 

This technology enables the measurement of tens and thousands of gene expressions of a 

biological sample in just one single chip (Samb, 2005).  

 

Microarray data usually consists of two sections, the samples and variables or 

genes. Measuring gene expression using microarray is relevant to many areas of biology 

and medicine. The uses of microarray in the field of medicine vary and they include 

DNA microarray, tissue microarray, protein microarray, plant microarray and many 

more which adds to the reasons why microarray data is mined so widely since its 

existence. 
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Microarray data mining is indeed a very useful study as it helps in early detection 

of genes mutation and diagnosis of disease of which, if diagnosed early can help prevent 

death. Hence, microarray data mining which uses the combination of both mathematical 

modeling and biological technology is certainly a comprehensive way not only to 

classify disease but also to examine disease outcome and discover new cancer subtypes. 

Some recognize this field as the field of Bioinformatics.  

 

Cancer classification has been a popular study over the past few years. Just like 

any other data, cancer too come in different subtypes. In classification problems, these 

subtypes are known as classes. Classification can therefore be done onto cancer data to 

build a model that can describe the classes. Previously, cancer classification is done 

using the most traditional method which is based on combinations of few clinical 

techniques. These techniques include looking at the differences of the cell shapes and 

detecting enzymes that are not normally produced by certain cells. The former are the 

clinical methods that are carried out to help diagnose cancer disease. However, studies 

show that not one of those tests are 100% accurate and are always inconclusive 

(Twyman, 2002).   

 

Just like when mining other types of data, many challenges are faced when 

mining microarray data. Microarray data is one data which contains the expression 

levels of thousands of genes, thus increasing the difficulty level when it comes to mining 

the data. Secondly, microarray data usually has a very large number of variables as 

compared to the observed samples. And therefore efforts to achieve good results very 

much depend on the study scope of the researcher. Some researchers might classify good 
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results as obtaining good models whereby they obtain high percentage of correct 

classification while some chose to look at the error rates of models obtained instead. For 

example, Ng and Breiman (2005) decided to use Random Forest to select their first 20 

important genes before they used their proposed bivariate selection method to see the 

interaction among genes and further reduce the number of genes to obtain better results.  

Nevertheless, although mining microarray data might be a wearisome task, the result 

obtained is often worth the effort.  

 

1.3 Objective  

 Classification, which allows us to find a model that describes data classes, is the 

main mining method in this research. Classification not only allows us to classify genes 

but also to see hidden patterns especially among significant genes in order to obtain 

better results. Most classification schemes rely very much on selecting useful or 

important genes which can contribute significantly to the classification results and thus 

creating a good model.  

 

The main objective of this research is to come out with good classification 

accuracy (high percentage of correct classification of genes) by identifying smaller set of 

genes. We propose a stair-line method to select significant genes. Basically, our stair-

line method involves three steps which consist of first selecting significant genes using 

Random Forest, second eliminating genes with odd platykurtic behaviour and third re-

select top 20 significant genes with highest t-values. Here, we define significant genes as 

those genes which are well differentially expressed. Lastly, classification is then done 
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using Random Forest classifier of which its error function has been modified to reduce 

the effect of kurtosis.  

 

1.4 Methodology 

Data mining tasks vary from one study to another. The fundamental stages that 

are involved in data mining include pre-processing, processing and post-processing. The 

initial data mining task in our research involves selecting significant genes to reduce the 

effect of kurtosis found among the genes. While many other researchers have chosen to 

work at specific algorithms, we have chosen to look at the effect of the statistical 

measurement kurtosis instead as this is an area which has not much been emphasized on. 

Teschendorff et. al. (2006) used kurtosis behaviour found among genes as a clustering 

method.  

 

In our paper, we have proposed the stair-method which consists of a total of three 

steps in selecting significant genes before classification is done to reduce the kurtosis 

effect found among genes. While we could have only used Random Forest classifier to 

select important genes, we want to bring in the importance of distribution in genes and 

show that the selection of significant genes does not necessarily involve only one or two 

steps but three as shown in our research. However, we have also proven that the three 

steps chosen synchronized well with each other, giving good and reasonable results.  

 

 Once a raw data has been obtained, it must go through certain steps of data 

cleaning before it can be processed. Thus, the data cleaning process, often referred to as 
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pre-processing stage is absolutely vital as it is the initial stage to start the whole data 

mining processes. As microarray is normally a large dimensioned data, pre-processing is 

usually not an easy task. In our study, we have introduced a stair-line method to choose 

the significant genes. This stair-line method will be done using scripts written in 

Mathematica, a computer algebraic system. 

 

Once a raw data has been pre-processed or cleaned, mining methods can be 

applied onto it. As mentioned earlier, the mining method used for this research is 

classification. Besides using the Random Forest classifier, the use of a powerful data 

mining software, WEKA (Waikato Environment for Knowledge Analysis), and the 

readily available several classification algorithms in WEKA will also be used to build 

our classification models. These algorithms include J48, ZeroR, k-nearest neighbour, 

Naïve Bayes, support vector machine and neural network and will be used as a 

comparison to the Random Forest classifier. 

 

1.5 Summary of Contribution 

In this research, we have proposed an alternative method to select significant 

genes, which is by looking at the genes’ distribution. Normal procedure of selecting 

significant genes usually involves only one or two steps. Tibshirani et. al. (2002) who 

has created an approach known as nearest shrunken centroids to identify subsets of 

genes that best characterize each class in classifying the blue-cell tumor. However, their 

research was only validated by the blue-cell tumor and leukemia dataset which could 

possibly mean that the method might not work well for the other cancer datasets. An 
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example on research on the usage of two algorithms was done by Li et. al. (2002). In 

their paper, a Bayesian method which performed similarly to that of support vector 

machine’s algorithm was used. Nevertheless, they also limited their research to only 

three datasets and have also not clearly proven their Bayesian method’s superiority over 

the other methods.  

 

Our proposed stair-line method has three steps and all these three steps 

synchronize well with each other. We have also opted to use five datasets instead to 

show the superiority of our proposed method. Our methods deviate from the 

conventional way of selecting significant genes. Our combination of steps looked at both 

genes’ distribution as well as how the genes are differentially expressed. Initial 

experiment showed that these genes generally have a negative kurtosis value or are of 

platykurtic distribution although there are some outliers. After omitting the outliers and 

selecting genes which are differentially expressed using a t-test, we reduce the effect of 

kurtosis by modifying the error function in the Random Forest classifier. Our study has 

also successfully proven that Random Forest is a versatile classifier yet robust enough to 

handle highly dimensioned data such as the microarray data.  

 

1.6 Thesis Summary 

 This thesis has six chapters. It starts with the introduction chapter which gives a 

brief but precise explanation on microarray data mining and its issues that motivate this 

research. The introduction also tells the study scope and the layout of our research. 
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 In chapter two, we highlight the importance of data mining and different methods 

of data mining. Besides, the statistical measurement and the classification techniques 

used in this study are also explained. We also discuss about the other classification 

methods which are the J48, ZeroR, k-nearest neighbour, Naïve Bayes, support vector 

machine and neural network that are being used in this study as a comparison to our 

main classifier, Random Forest. 

 

 Chapter three introduces the technology of microarray. This chapter focuses on 

introducing the fundamental of microarray including the process and its connection with 

human genes. We also highlight the common issues faced in microarray data mining and 

past researches that have been done in this field.  

 

 The following chapter which is chapter four discusses the implementation of our 

experiments. Here, we introduce our datasets in detail and explain how our data is being 

prepared using our proposed method which is the stair-line method before classification 

is done.  

 

Chapter five presents and discusses our results. Results are discussed in details 

and graphs and tables are used to show a better representation of the results.  

 

The last chapter is the conclusion of the thesis. In this chapter, we recapture the 

purpose of this study as well as our objective and motivation.  
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CHAPTER 2 

DATA MINING AND TECHNIQUES OF CLASSIFICATION 

 

2.1 Data 

2.1.1 Collection of Data 

Data and information of different forms are created and stored each day. 

These data are collected for a variety of reasons. We are indeed overwhelmed with 

the amount of data in the world, and this amount seems to be increasing with no end 

in sight. Some data are so huge that it requires computers with larger memory 

capacity to handle them. Hence, it is almost impossible to imagine having such data 

handled manually without the help of computer technology.  

 

The phenomenon of data-handling is actually closely related to the 

development of the computer technology. Computers have now made it easy to save 

and store information. There are a lot of advanced tools that are available to store 

data. Examples of such tools that are available are Structured Query Language (SQL) 

and Oracle or Microsoft Access. With the availability of these tools, we can store 

whatever data we want in a clearer form with the additional benefit that this data can 

be retrieved anytime and anywhere and in a much convenient way. 

 

However, while having to store data efficiently is important, good human 

skills are essential when it comes to understanding the data that is being stored. Most 

of the time, people tend to lack the skill in understanding the data collected and 

might eventually not be able to interpret the collected data properly. As there might 

be hidden information in the data that can be potentially useful, the former is 
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definitely a serious problem. Therefore, knowledge discovery is introduced in the 

hope to solve this and other matters arising that are connected closely to data-

understanding. 

 

2.1.2 Data and Its Quality  

 There are many forms of data and they usually come in different dimensions. 

While some expects a large data to contribute to more new findings, it also requires 

far more complicated methods to handle the data.   

 

 Microarray data for example, is one data that is very large in dimension and 

contains more number of variables (genes) as compared to the number of samples or 

observations. Hence, carrying out analysis on the data is definitely going to require 

more time and effort.  

 

 Besides, it is vital to have an overview of the type of data we are mining. To 

do this, the data’s pattern must be evaluated so as to obtain a clearer picture of the 

data which can then enhance the process of data mining.  

 

 Looking at the data’s pattern involves the usage of statistics. Spiegel (1999) 

mentioned that statistics is a scientific method relating to the collection, analysis, 

summarization, and explanation of data.  There are many ways to look at the pattern 

of a data which include investigating on the measures of central tendency which 

involve the calculation of mean, median and mode and measures of dispersion which 

involve the calculation of first quartile, third quartile, variance and standard 

deviation. Some also consider the data’s maximum and minimum values to help 
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locate any outliers in the data. Missing values is another problem that is commonly 

faced especially when handling real-life data. Depending on which variables these 

values are missing on, researchers will conduct necessary steps, either to substitute 

the missing values with a certain average point or to disregard the whole variable 

This again depends on the researchers’ scope of study. 

 

 Unlike the commonly used statistical measurement like the measure of 

central tendency and measure of dispersion, the measurement of kurtosis is one 

criterion we looked at in this study.   

 

 Kurtosis is the degree of peakedness of a distribution. Mathematically, 

kurtosis is the normalized form of the fourth order central moment of a distribution. 

A high kurtosis value means a higher variance which is due to the infrequent extreme 

deviations, as opposed to the frequent modestly sized deviation. Kurtosis is useful to 

characterize the characteristics of a distribution (Pearson, 2005). Unlike skewness 

which can be easily seen from a box plot, kurtosis is often not as easily detected. 

Nevertheless, kurtosis can be calculated by using 3
)(

4

4

−
−∑
σ

µ

N

x
 whereby, x  is the 

value of a point, µ  represents average and σ  represents standard deviation of the 

data. An approximate standard error to compensate the existence of non-zero kurtosis 

is given by 
n

e
24

=  (Crawley, 2005). 
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2.2 Data Mining 

Data mining has become a powerful technology in different fields. The term 

data mining was used to describe the component of the Knowledge Discovery in 

Databases (KDD) process where the learning algorithms were applied to the data and 

can be defined as the process of selection, exploration and modeling of large 

quantities of data to discover models and unknown patterns (Giudici, 2003).  

 

 Data mining is a whole process of data extraction and analysis to achieve 

specified goals. Data mining is different from data retrieval because it looks for 

relations between phenomena that are not known beforehand. So, in short, data 

mining is about solving problems by analyzing data that is already present in the 

databases (Olson and Delen, 2008). 

 

Data mining uses techniques such as artificial intelligence, statistics and pattern 

recognition. Data mining methodologies include:  

Association - looking for patterns where one event is connected to another event 

Sequence or path analysis - looking for patterns where one event leads to another 

later event 

Classification - looking for new patterns 

Clustering - finding and visually documenting groups of facts not previously known 

Forecasting - discovering patterns in data that can lead to reasonable predictions 

about the future. 

  

A complete data mining process comes in three steps which are the pre-

processing, processing and the post-processing. The pre-processing step is often 
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known as the feature selection step whereby researchers reduce the number of 

variables by getting rid of noisy and irrelevant ones. Clustering and classification are 

types of processing method where the former is unsupervised and the latter is 

supervised. Forecasting on the other hand is a post-processing task.  

 

While there are many data mining methodologies available, classification is 

probably the oldest and most widely-used of all when it comes to mining microarray 

data and will be used throughout our study. There are a few classification techniques 

which will be used in this study apart from our main concern which is the Random 

Forest. Those classification techniques are ZeroR, J48, Naïve Bayes (NB), k-nearest 

neighbour (KNN), support vector machine (SMO) and neural network (MLP). 

 

2.3 Classification and Its Techniques 

2.3.1  Random Forest 

 Random Forest is an algorithm that is able to compute a collection of single 

classification trees. Random Forest is a classification algorithm developed by the late 

Leo Breiman in 2001.  

 

Random Forest creates a forest-like classification. The basic algorithm in 

Random Forest works in such a way that each tree is constructed using a different 

bootstrap sample built from the original data. The each tree that is built is grown to 

the fullest without any pruning. The bootstrap data points is a random sample of size 

n drawn with replacement from the sample (x1, ..., xn). This means that the bootstrap 

data set consists of members of the original data set, some appearing zero times, 

some appearing once twice, etc (Efron and Tibshirani, 1997). The whole bootstrap 
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procedure is repeated several times, with different replacement samples for the 

training set and the result is then averaged. 

 

The bootstrap sample usually consists of about two-thirds of the data. The 

other one-third or out-of-bag (oob) case will then be used as the ‘test’ set to get the 

classification result. Classification is done by getting the majority vote (particular 

class) of each ‘test’ set in a certain collection (Breiman, 2001). 

 

Random Forest has its own variable (genes) selection procedure. The number 

of votes cast for the correct class is counted after each out-of-bag case is put down in 

each tree grown in the forest. The values of the mth variable in the oob cases are then 

permuted and put down the trees. The difference between the correct votes cast for 

the variable-permuted data and the untouched data is calculated by subtracting the 

former from the latter. The raw importance score for the mth variable is the average 

over all trees in the forest.  

 

Random Forest is a good classifier because it gives competitive results in 

accuracy among current algorithms. Besides, it has the capacity to run efficiently on 

large data which means it can handle thousands of input variables and this is 

definitely an important feature in our study as we dealt with microarray data which 

contains thousands of variables.  

 

2.3.2  Decision Tree (J48) 

 Decision tree is derived from the simple divide-and-conquer algorithm. The 

most common algorithms of the decision trees are C4.5 and ID3. The attractiveness 
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of decision tree is its easy and convenient representation whether in visualization or 

in rules that can readily be expressed so that human can understand them (Gamberger 

et. al., 2001).  

 

J48 is one classifier that is implemented based on the concept of decision tree 

and uses the C4.5 algorithm. It generates pruned and un-pruned C4.5 algorithm 

decision tree. C4.5 allows pruning of the resulting decision tree. Although pruning 

tends to increase the error rates on the training data, more importantly, it can 

decrease the error rates on the unseen test cases (Witten and Frank, 2000). 

 

The decision tree algorithm works by first selecting an attribute to be the root 

node and make a branch for each possible value. So, this will split the instances into 

subsets. When all instances at a node have the same classification, the tree will stop 

splitting. In short, the decision tree is a classifier that works in the form of a tree 

structure (Gamberger et. al., 2001). Figure 2.1 shows a visualization of a tree 

structure classifier. 

 

On the whole, J48 can be considered as a good classifier as it is able to deal 

with numeric attributes, missing values and noisy data. Nevertheless, the drawback is 

that only one attribute is used to split the data into subsets at each node of the tree. 

Besides that, J48 usually only performs better with binary-class data as compared to 

multi-class data. 
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Figure 2.1: Visualization of a Tree 

 

2.3.3 Bayesian Theorem - Naïve Bayes 

 The Naïve Bayes Classifier technique is based on Bayesian theorem. The 

Naïve Bayes classifier has been successfully applied in a number of machine 

learning applications. It is constructed by using the training data to estimate the 

probability of each class given the gene expression of the new sample. The Naïve 

Bayes model makes additional assumption that the values for each attributes are 

independent (Aas, 2001). 

 

Naïve Bayes is particularly appropriate when the dimensionality of the 

independent space i.e., number of input variables is high. For the reasons given 

above, Naïve Bayes can often outperform other more sophisticated classification 

methods (The Statistics Homepage, 2003). The Bayesian Theorem is given 

If x = 1 and y = 0 
 Then class = a 
If x = 0 and y = 1 
 Then class = a 
If x = 0 and y = 0 
 Then class = b 
If x = 1 and y = 1 
 Then class = b 
 

  x = 1 ? 

  y = 1 ?   y = 1 ? 

 b  a  a b 

no 

     no no 

yes 

  yes yes 



 17 

by
)(

)()|(
)|(

DP

HPHDP
DHP = . Generally the problem is to find the hypothesis H 

that best explains the data D. 

 

    

 

 

 

 

 

          

Figure 2.2: Classifying a New Object 

 

In order for us to demonstrate the concept of the Naïve Bayes classification, 

consider the example shown in Figure 2.2. There are both grey and black objects. 

Our task is to classify the new object which is the white object (namely X). Since 

there are 15 grey objects and only 10 black objects in the figure, it is logical to 

believe that the new object is likely to have membership of grey rather than black. In 

the Bayesian analysis, this belief is known as the prior probability (The Statistics 

Homepage, 2003).  So, the prior probabilities for grey circle and black object are: 

Prior Probability for grey object =     = 
25

15
 

Prior Probability for black object =    =  
25

10
 

 

objects ofnumber  Total

objectsblack  ofNumber 

objects ofnumber  Total

objectsgrey  ofNumber 
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We assume that the more grey (or black) object around X, the more likely 

that X belongs to that particular colour. So, in order for us to measure that, we draw a 

circle around X which encompasses a number of points irrespective of their colour 

labels. Then we calculate the number of objects in the circle belonging to each class 

label. From this we calculate the likelihood: 

Likelihood of X given grey =        = 
15

1
 

Likelihood of X given black =       = 
10

3
 

 

Although the prior probability indicates that X may belong to grey but the 

likelihood indicates otherwise. In the Bayesian analysis, the final classification is 

produced by combining both sources of information, i.e., the prior and the likelihood, 

to form a posterior probability using the so-called Bayes' rule (The Statistics 

Homepage, 2003). 

 

Posterior probability of X being grey  

= Prior Probability for grey object × Likelihood of X given grey 

= 
25

1

15

1

25

15
=×  

    

Posterior probability of X being black  

= Prior Probability for black object × Likelihood of X given black 

= 
25

3

10

3

25

10
=×    

   

objectsgrey  ofnumber  Total

circle in the objectsgrey  ofNumber 

objectsblack  ofnumber  Total

circle in the objectsblack  ofNumber 
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Finally, we classify the X as black because it achieves the highest posterior 

probability. 

 

From the above visualization, we can conclude that it is one classifier that is 

easy to comprehend. Naïve Bayes also easily handles missing values by simply 

omitting single attribute probabilities for each class. However, as the attributes of 

most of the datasets available are usually not all independent, this contradicts with 

Naïve Bayes’ assumption and might affect the performance of this classifier. 

 

2.3.4  K-Nearest Neighbours (KNN) 

In this classification technique, a new variable with an unknown label is 

assigned the label of the variable in the training set which is nearest and similar. The 

nearest neighbour algorithm is extremely simple and is used in many applications. 

The similarity may be measured using distance measures which include Euclidean 

distance, Euclidean squared distance, Manhattan distance (also known as City-block 

distance or taxi-cab distance), and Chebychev distance.  

 

While nearest neighbour refers to the nearest neighbour or 1 nearest 

neighbour, k-nearest neighbour or KNN refers to the kth nearest neighbour. Apart 

from that, KNN is a more robust method that classifies data points by looking at 

more than just the nearest neighbour. KNN is a memory-based method. That, in 

contrast to other statistical methods, requires no training. It functions on the intuitive 

idea that close objects are more likely to be in the same category. Thus, in KNN, 

predictions are based on a set of prototype examples that are used to predict new or 

unseen data based on the majority vote (The Statistics Homepage, 2003). 
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The KNN classifier in WEKA uses the Euclidean distance, D which is the 

distance measured between the sample with the gene values a1
(1)
, a2

(1)
, …, ak

(1) 

(where k is the number of attributes) and one with values a1
(2)
, a2

(2)
, …, ak

(2).   

The formula is given by 2)2()1(2)2(
2

)1(
2

2)2(
1

)1(
1 )(...)()( kk aaaaaaD −++−+−=  

 

 

 

 

 

 

      Figure 2.3: The Distance Between A-B and A-C 

 

On the other hand, when nominal variable are present as shown in Figure 2.3, 

it is necessary to come up with a “distance” between different values of that variable. 

In this case, we have to calculate the distance between the black dots and the grey 

dots as seen in Figure 2.3. Usually a distance of 0 is assigned if the values are 

identical, otherwise the distance is 1. Thus, the distance between black and black is 0 

and that between black and grey is 1. 

 

If the value of k becomes very large, then the classification will become all 

the same – simply classify each attribute as the most numerous class. For this study, 

we will use k=4. 

 

The KNN classifier is user-friendly and gives optimal results by numeric 

data. However, the weakness of this classifier is its large computing power 

A 

B 

C 
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requirement, since the distance to all the objects in the dataset has to be calculated in 

order to do classification and the database also can be easily corrupted by noisy 

exemplars, which are the already-seen instances that are used for classification (Ye, 

2004). 

 

2.3.5  Support Vector Machine - Sequential Minimal Optimization 

(SMO) 

 Support vector machine (SVM) is a linear modeling that is used for 

classification and instance-based learning. It is based on the maximum margin 

hyperplane. SVM selects a small number of critical boundaries called support vector 

from each class and builds a linear discriminate function that separates them as 

widely as possible. Support vector is a set of points in the feature space that 

determines the boundary between objects of different class memberships. It 

transforms the instance space into a new space. With a nonlinear mapping, a straight 

line in the new space does not look straight in the original instance space. A linear 

model constructed in the new space can represent a nonlinear decision boundary in 

the original space (Witten and Frank, 2000). 

 

 If there is a two-class dataset whose classes are linearly separable; that is, if 

there is a hyperplane in instance space that classifies all training samples correctly 

then the maximum margin hyperplane is the one that gives the greatest separation 

between the classes. 
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Figure 2.4: A Maximum Margin Hyperplane 

 

In Figure 2.4, two classes are represented by open and filled circle. We 

connect each circle of the same class and two polygons are created. Since we 

assumed that the two classes are linearly separable, it cannot overlap each other. 

Among all hyperplanes that separate the classes, the maximum hyperplane is 

considered to be the one that is as far as possible from both the polygons that are 

built. The equation of the hyperplane separating the two classes can be written as 

22110 awawwx ++=  with a1 and a2 as the variable values and w as weights to be 

learned. 

 

 The instance that is closest to the maximum margin hyperplane is the one 

with minimum distance and it is called the support vector. There is always at least 

one or more support vector for each class (Witten and Frank, 2000). 

 

 There are many methods to train SVM. One particularly simple method is 

Sequential Minimal Optimization (SMO) which is what we will be using in WEKA. 

Nevertheless, SMO is often slow to converge to a solution, particularly when the data 

Maximum margin hyperplane 

Support vectors 
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is not linearly separable in the space spanned by the nonlinear mapping. This 

situation increases with noisy data (Witten and Frank, 2000). 

 

2.3.6  Neural Network - Multi Layer Perceptrons (MLP) 

Neural network has been successfully applied in many areas. Indeed, neural 

network can be seen anywhere especially when it comes to problems like prediction, 

classification or control. Basically, neural network is so popular because of its 

powerful algorithm and the fact that it is easy to use. In addition, neural network is 

nonlinear and is also a very sophisticated modeling technique which is able to model 

an extremely complex function. However, the algorithm is also not as easily 

comprehensible as the others and is often called the black box. 

 

The basic neural network consists of neurons. A neuron receives a number of 

inputs either from the original data or from the output of other neurons in the neural 

network and each of the input comes via a connection that has a strength or weight. 

Each neuron also has a single threshold value. The weighted sum of the inputs is 

formed, and the threshold is subtracted to compose the activation of the neuron. The 

activation signal is then passed through an activation function to produce the output 

of the neuron (The Statistics Homepage, 2003). 

 

A simple network, as shown in Figure 2.5, has a feedforward structure: 

signals flow from inputs, forwards through any hidden units, eventually reaching the 

output units. A typical feedforward network has neurons arranged in a distinct 

layered topology. The input layer is not really neural: these units simply serve to 

introduce the values of the input variables. The hidden and output layer neurons are 
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each connected to all of the units in the preceding layer (The Statistics Homepage, 

2003). 

 

 

       

 

Figure 2.5: A Basic Artificial Model 

 

When the network is used, the input variable values are placed in the input 

units, and then the hidden and output layer units are progressively executed. Each of 

them calculates its activation value by taking the weighted sum of the outputs of the 

units in the preceding layer, and subtracting the threshold. The activation value is 

passed through the activation function to produce the output of the neuron. When the 

entire network has been executed, the output of the output layer acts as the output of 

the entire network (The Statistics Homepage, 2003). 

 

The neural network is trained using one of the supervised learning 

algorithms. The supervised learning networks are the Multi Layer Perceptron (MLP), 

the Cascade Correlation learning architecture, and Radial Basis Function networks 

(Michie et. al. 1994). However, the most popular network architecture in use is the 

MLP and will be used for this study. It also uses the concept and the algorithm that 

we discussed in the previous part. The number of input and output units are defined 

  Hidden Layer 

Input Layer                                Output Layer 
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by the problem and one hidden layer with the number of hidden units set to half the 

sum of the number of input and output units (The Statistics Homepage, 2003). 

 

The strength of this classifier is that it can deal with missing values and is 

also noise-tolerant. However, there is a limit for this tolerance. If there are outliers 

far outside the range of the normal values for the variables, they may bias the 

training. The disadvantage of this classifier is that it does not perform well with 

nominal attributes. Moreover, the time taken to construct the hidden layer can be 

very lengthy with the increase of the number of samples.  
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CHAPTER 3 

MICROARRAY AND ISSUES ON MICROARRAY 

 

3.1  Genes and Its Significance 

 Genes are responsible for establishing some set of properties in all living 

organisms which are made up of smallest units, cells. All essential functions of 

organisms are controlled by cells which carry very useful information to be passed from 

generation to generation of a living organism. As genes are somehow known as the 

discrete hereditary units which do this job and are made of deoxyribonucleic acid or 

better known as DNA (Dale and Schantz, 2007),  the interaction among genes results in 

the appearance of different characteristics in organisms. The inherited information could 

be of characteristics such as the physical appearance of an organism which could be the 

colour of the hair, eye and other physical characteristics. Nevertheless, not all genes play 

the roles of the hereditary of these physical traits. Dominant genes for example will take 

over recessive genes. This means that the physical appearance is a result of the 

dominating genes taking place over the recessive ones.  

 

 Many genes are situated along each long DNA molecule. Chromosomes are 

attributes of DNA which sub-divide the activities of genes into the coding and non-

coding sequences. The complete set of genes in an organism is called genome. Gene 

expression is obtained when the process of transmission of DNA to protein takes place. 

Gene expressions are important as they reveal the inheritable information in an 

organism.   
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 Genomics is the study of structure and function of genes and have become a 

popular study over the years. The field of medicine for example has benefited from this 

branch of study. Genetic diseases which are caused by genetic disorders are a result of 

genes not properly expressed or not expressed at all. Cancer happens because these 

complications occur. Previously, studies to deal with genetic diseases are done by 

carrying out analysis of one gene at a time. This however is very time consuming and 

might not always be 100% accurate. Nevertheless, with the availability of microarray 

which enables a set of thousands of genes to be looked at simultaneously, the study of 

genes has become easier.  

 

 The expression values obtained through the transcription of genes can carry very 

significant meanings especially when it comes to the studies of genes in genetic 

diseases. In microarray experiments, scientists aimed to look at genes which are 

differentially expressed because these are said to be genes that are contributing to the 

occurrence of the diseases. These genes are also called the significant genes. A cancer 

tumor growth for example, might be due to a mutated gene or genes that are 

inappropriately expressed.  

 

3.2 Microarray Technology 

 The advancement of microarray technology has created never-ending efforts in 

mining the data. Mining these data include performing regression, classification and 

even gene-analysis of the genes expression levels.   
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 A technology that is widely adapted by most biologists to perform genomic 

analysis, microarray is a study on the interaction among a large number of genes and 

how a cell's regulatory network control vast batteries of genes simultaneously. Basically, 

microarray is so-named because the sizes of the sample spots obtained in its experiments 

are typically less than 200 microns (10-6) in diameter. These spots are rather recognized 

as microscopic. Besides that, these arrays usually contain thousands of spots (Samb, 

2005). 

 

 There are several different types of microarray namely Short oligonucleotide 

arrays (made by Affymetrix), cDNA or spotted arrays (originated by Pat Brown lab at 

Stanford), Long oligonucleotide arrays (Agilent Inkjet) and Fiber-optic arrays. However, 

the first and the second type are the most common ones. In addition, different types of 

microarray use different technologies for measuring the Ribonucleic acid (RNA) 

expression levels. As of 2002, the Affymetrix U133 2-chip set, can measure expression 

of over 30,000 genes which is almost the entire human genome (Piatetsky-Shapiro, 

2003). 

 

 The uses of microarray in the field of medicine include DNA microarray, tissue 

microarray, protein microarray, plant microarray etc. Microarray may be used to assay 

gene expression within a single sample or to compare gene expression in two different 

cell types or tissues samples, such as in healthy and diseased tissue (Samb, 2005). 

Microarray also has many potential applications. These applications include:  

1. More accurate disease diagnosis from gene expression levels;  
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2. Predicting treatment outcome;  

3. Tailoring drug therapy based on gene expression levels (pharmacogenomics);  

4. Drug discovery and toxicology studies;  

5. Assisting fundamental biological discovery.  

 

In the study of genetic diseases for example, microarray technology has been 

proven to be of help. Microarray enables scientists to look at numerous genes at a time 

which saves time and cost. Genes which are differentially expressed could be found out 

easily instead of the usual analysis of gene by gene. Thus, drugs could be made to 

directly aim at treating these diseased cells.  

 

Microarray data usually has many variables (genes) and few samples, making the 

process of correctly analyzing such data difficult to formulate and prone to common 

mistakes. For this reason, it contributes to the rise of microarray data mining.  

 

3.2.1 Process of DNA Microarray                  

Living cells contain chromosomes while deoxyribonucleic acid or better known 

as DNA contains thousands of genes. Each of those genes has specific composition and 

structure of the single protein. Every cell has the same sets of chromosomes, but they 

have very distinct properties. This is due to the differences caused by the abundance, 

state and the distribution of the cells. The changes of the protein is determined by the 

changes in the level of messenger ribonucleic acid (mRNAs), which are the nucleid acid 

polymers carrying information from chromosomes to the cellular machines that 
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synthesize new protein. Thus, gene expression is the process of transcribing the gene’s 

DNA sequence into mRNA (Aas, 2001). 

 

         

Figure 3.1: Process of Microarray (Aas, 2001) 

A DNA microarray experiment consists of the measurement of the relative 

representation of each mRNA in a set of biological samples. This is done using 

principles of base-pairing or hybridization (Schena et. al., 1995). The collection of DNA 

spots is usually done on a solid surface, such as glass, plastic or silicon chip to form an 

array (Piatetsky-Shapiro, 2003).  

 

In detail, the DNA samples are fixed to a solid surface with their position known 

in the array. Red and green dyes are used to label target or tumor sample and reference 

or normal samples as shown in Figure 3.1. The ratio (green/red) which is also the 



 31 

intensity of mRNA are measured using a fluorescent microscope. The result is the ratio 

of the relative abundance of genes in the experimental sample and the common reference 

sample as the experimental sample is compared to the common reference sample. 

Therefore, the ratio obtained can consist of positive and negative values. The positive 

values indicate a higher expression in the target versus the reference and vice versa for 

the negative values (Aas, 2001). 

 

Result obtained is in the form of a table, whereby the rows represent the genes, 

and the columns represent the samples. Each cell is then changed to the log of base 2 – 

transformed expression ratio of the appropriate gene in the appropriate sample (Aas, 

2001). 

 

3.3 Review of Microarray Studies 

 The development of microarray has attracted many researchers to conduct 

studies in the hope to obtain a reliable research result that can contribute to the 

significance of microarray development. Studies comprise from analysis and 

interpretation of microarray data to clustering and classifying it varying from the usage 

of statistical methods to a combination of mathematical modeling and biological 

techniques to using machine learning artificial intelligence tools.  

 

 One very vital study on the microarray data is on the feature selection method. 

Many researchers had created different methods for performing feature selection, which 

is to pre-select important genes before conducting any classification. Feature selection is 
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indeed an important step as it eliminates thousands of other genes which are somehow 

not contributing much to the data analysis. Nevertheless, significant genes have different 

definition among researchers, and because of this belief, there are various ways in 

deciding which genes are important and which are not. Microarray dataset is a highly-

dimensioned data and often contains a lot of noisy genes and outliers too. Thus, 

researchers are keen to come out with the most reliable gene selection method. Li et. al. 

(2005) had combined the powerful genetic algorithm tool together with support vector 

machine to extract optimal subset of gene. Xiao et. al. (2004) suggested that one needs a 

pertinent distance between two random vectors in order to compare gene expression 

signals in two different experimental conditions.  Kim and Park (2004) used regularized 

t-tests to improve the identification of differentially expressed genes in microarray data.  

Jirapech-Umpai and Aitken (2005) have used genetic algorithm to pre-select their best 

genes and then classify them using nearest neighbour classification scheme. In Datta and 

DePadilla’s (2006) study, they demonstrated the usefulness of a feature selection step 

prior to applying a machine learning tool. A natural and common choice of a feature 

selection tool is the collection of marginal p-values obtained from t-tests for testing the 

intensity differences at each m/z ratio in the cancer versus non-cancer samples. Silva el. 

al. (2005) investigated how to use feature selection techniques to speed up the process of 

finding significant genes. Ng and Breiman (2005) proposed a bivariate method using 

Random Forest to select significant genes. In their method, they select pairs of genes 

which are relevant to one another. While others use just one single algorithm to carry out 

the feature selection, our stair-line method involves a few steps carried out using 

Mathematica as well as Random Forest.  
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 While selecting significant genes is essential, it is also important to have reliable 

computational tool to carry out the classification process. Khan et. al. (2001) used 

artificial neural network to classify four classes of round blue-cell tumor. They 

combined genetic algorithm and support vector machine to classify multi-class tumor. 

Another paper by Yeung et. al. (2005) had created a Bayesian model averaging tool to 

pre-select genes and classify them for multi-class microarray data. Other studies include 

hybridization of two or more machine learning tools for classification purposes as what 

Penga et. al. (2003) had done.   

 

 Some researchers even swerve away from either the invention of new 

classification scheme and feature selection method to just simply conducting a robust 

comparison of few classification algorithms and feature selection to select the ones that 

perform best. Wu et. al. (2003) did a comparison of the statistical methods just for the 

classification of ovarian cancer using mass spectrometry. Another paper by Li et. al. 

(2004) which conducted a comparative study on feature selection and multiclass 

classification methods for tissue classification based on gene expression. In their paper, 

they used eight feature selection methods, while training nine datasets on seven 

classification algorithms. A recent paper done by Lee et. al. (2005) is even more 

intensive as they compared among 21 different classification methods in seven 

microarray datasets after undergoing three different gene selection methods or pre-

processing stage.  
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While selecting important genes has always been considered an important step, 

there are not many studies in which analysis of the importance of genes that have been 

selected are carried out. One paper by Pang et. al. (2006) conducted a pathway analysis 

using the Random Forest classification and regression to better understand significant 

genes in their biological manner. In their paper, they described a pathway-based method 

to rank important genes and to distinguish outliers. However, their method is based more 

on the biological approach rather than the mathematical approach. 

 

Other papers include focusing on using Random Forest as a strong tool for 

machine learning. Chen et. al. (2004) came up with two ways to deal with imbalanced 

data which is often a common problem faced by all researchers when mining microarray 

data. They have used the approach of cost sensitive learning and the other is based on a 

sampling technique. Nevertheless they have proven that while the error rate of a 

particular minority class can be reduced, the overall error rate is still considered more 

essential as it is what researchers often look at.   

 

Issues on microarray are just too many to tackle. This has led to never-ending 

researches on problems which often revolved around obtaining more accurate 

classification results and acquiring significant genes or genes that are differentially 

expressed. While many chose to focus only on one section of the data mining parameter, 

we have chosen to further prove the strength of Random Forest as a classifier with the 

help of simple filtering and statistical measuring techniques. We have borrowed the idea 

of Teschendorff et. al. (2006) of looking at one of the statistical measurement known as 

kurtosis to rank the genes. In their paper, they have used the statistical measurement to 
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rank the genes and cluster them. However, Random Forest was not used in their paper as 

their main concern was to do clustering.  
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CHAPTER 4 

THE STAIR-LINE METHOD 

 

 The experiments run for this study involved three basic stages which are pre-

processing, processing and post-processing. The pre-processing stage, also known as the 

data-cleaning task, is one of the major stages in this research. It comprises of four steps 

of eliminating noisy genes and selecting important genes. The processing stage in this 

study involves the building of classification model with our proposed method of 

reducing the effect of kurtosis by changing the error function in Random Forest whereas, 

post-processing is the stage where we will view the results and comment on them. The 

post-processing stage will be discussed further in chapter 5. 

 

4.1 Pre-processing Data 

 Microarray data always comes in as a large dimensioned matrix. Hence, it is 

inefficient to just process the raw data without any data-cleaning. In fact, data-cleaning 

is an essential step as it prepares the data well enough for processing tasks. It is also 

almost impossible to process a data without first cleaning it. What adds on to the 

problem is that data preparation is a very tedious task as it involves more than one step 

and one method. Therefore, data preparation has to be carried out carefully considering 

relevant factors as closely as possible. 

  

In this part, we will explain the data preparation methods we use to prepare our 

data. In short, data preparation involves thresholding and filtering. Thus, we have 
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written several Mathematica scripts (see Appendix B-E) to complete the above tasks. All 

five datasets are prepared in similar manner.  

 

4.1.1 Removing Irrelevant Information 

Original data have attributes in rows and samples in columns. Besides, it also 

contains other unimportant information such as control genes and genes description as 

well. Thus, the first step in data preparation is to remove any control features. As for an 

experiment that is obtained using Affymetrix gene chip, it is often called the Affymetrix 

control or in short, Affy-control. Next, we also remove the gene description as it is not 

needed in this study.  

 

4.1.2 Threshold and Filter 

Note that because the expression values can vary very drastically while some 

expression values might not be well expressed due to weak signal strengths. Therefore, 

thresholding is essential. A standard minimum value of 20 and maximum value of 16000 

have been introduced and biologists consider any values out of this range to be 

unreliable (Piatetsky-Shapiro et. al., 2003). 

 

 Filtering is done by calculating the fold difference values of the genes. Fold 

difference is the maximum value across samples divided by minimum value. Fold 

difference is important as it is frequently used by biologists to assess the changes of 

genes. Filtering is done by omitting genes with values of fold difference less than 2. 
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Carrying out this filtering process is vital as some genes are not well expressed and do 

not vary sufficiently to be useful (Samb, 2005).  

 

4.1.3 Finding Significant Genes 

DNA microarray data typically has many attributes (genes) and few examples 

(samples), making the process of correctly analyzing such data difficult to formulate and 

prone to common mistakes. Thus having the data threshold and filtered are not enough if 

we want to come out with good classifications (Samb, 2005). To deal with this problem, 

we look for genes that can distinguish well among themselves between classes and 

eliminate any unclear feature. In other words, we reduce the number of genes by 

performing several steps in finding most significant genes. Finding significant genes 

means selecting genes that vary distinctively from one class to another or are 

differentially expressed. On top of that, it is vital to only collect genes that are not noisy 

and genes that are distinctively different, that is to say genes that show clear boundary 

among classes. Besides, with reduced number of genes versus samples, more precise 

classification can also be acquired.  

 

To do this, we propose a stair-line method which basically involves three steps. 

The stair-line method starts off by first selecting the top 50 genes as selected by Random 

Forest. Kurtosis values are then calculated for these 50 genes. Initial analysis found out 

that these genes have a negative kurtosis value of -2 or very close to -2. Thus, we narrow 

down our study scope to only look at genes with kurtosis value of -2. Hence, we have 
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eliminated genes which have kurtosis value not equal to -2 and these genes can also be 

considered as the outlier genes. 

 

 The remaining genes are now filtered and the top 20 genes with the highest t-

values are selected and arranged in ascending order. From the mathematical point of 

view, a t-value is a statistical measurement that represents the distance or deviation 

between two classes in units of standard deviation. It shows how genes in different 

classes are differentially expressed. Therefore, a high t-value shows significant 

difference between genes in different classes. We have also chosen to use a variation of 

the original t-value formula which is the t-LIMMA formula. T-LIMMA formula is the 

moderated t-statistic and is shown to follow a t-distribution with augmented degrees of 

freedom (Smyth, 2004).  

Formulae used are as follows. 
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To ease the understanding of the formulas, we shall take the brain tumor dataset as an 

example to explain the symbols used.  

The classes available in the brain tumor dataset are MED, EPD, MGL, RHB and JPA.  

x  is the expression value of a gene 

1N  is the number of samples in class MED 

2N is the number of samples in the remaining class 

1µ  is the average expression values for each gene in all samples with class MED 

2µ  is the average expression values for each gene in all samples with remaining class 

1σ  is the standard deviation of the expression values for each gene in all samples with 

class MED. 

2σ  is the standard deviation of the expression values for each gene in all samples with 

remaining class (EPD, MGL, RHB and JPA) 

T-Value1 is the t-value for each gene in all samples with class MED 

 

4.2 Processing Data 

There are numerous classification tools available that are well-established. 

However, the main tool used in this work is Random Forest which is initially 

implemented in Fortran programming language. 

 

While Random Forest computes a forest like classification, it means that models 

built are based on the creation of more than one tree. Therefore, the number of trees 

opted for is one very essential parameter. To see how this parameter actually affects the 

classification results, we have run the classifier using 100, 1000, 5000 and 10000 trees.  
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In the processing stage, genes that are selected from section 4.1 are now being 

classified using the modified Random Forest classifier. As our main objective is to deal 

with the abnormality of distribution of the genes which have a kurtosis value of non-

zero, we have created an error function to compensate this non-normal distribution. An 

approximate standard error which is used to handle kurtosis is 
n

e
24

=  whereby the n 

represents the number of samples observed (Crawley, 2005). In our method, we have 

proposed to modify the error function in Random Forest 

into
n

averagetreesnode
e

2)()( −×
= , whereby node is the value of node on the built 

tree, trees are the number of trees built, average is the average of all nodes on the built 

tree ion a chosen sample and n represents the number of samples observed. 

 

Besides Random Forest, we also chose to use WEKA, Waikato Environment for 

Knowledge Analysis which is an open source software by the University of Waikato. 

WEKA has a wide selection of other classifiers and evaluation methods which give the 

prime reason for its selection of our data mining tool. The classifiers that will be used in 

WEKA are ZeroR, J48, Naïve Bayes (NB), k-nearest neighbour (KNN), support vector 

machine (SMO) and neural network (MLP). Figure 4.1 shows the flow of experiments 

done in this study from pre-processing to post-processing and the shape of a stair-line 

can be seen in this figure.  
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Figure 4.1: Flow of Experiment 
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4.3 Datasets and Their Descriptions 

 There will altogether be five datasets which will be used in this study. These five 

datasets have their own uniqueness of number of genes as well as number of samples 

and class distributions. To demonstrate the superiority of our stair-line method, we have 

chosen to look at both binary and multi-class datasets. Besides, we have also widen our 

horizon by looking at datasets with as low as 57 samples to as high as 203 samples. 

Table 4.1 shows the full descriptions of the datasets used in this study. 
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Table 4.1: Descriptions of Datasets Used 

Dataset 

Attributes / 

Number of 

Genes 

 Number 

of Classes 

Number 

of  

Samples 

 

Class Distribution 

 

Brain Tumor 

(BRAIN) 

(Pomeroy et. al., 

2002)  

7070 5 

 

 

69 

MED - 39 samples 

EPD - 10 samples  

MGL - 7 samples 

RHB - 7 samples 

JPA - 6 samples 

Central Nervous 

System (CNS) 

( Pomeroy et al., 

2002) 

7070 2 

 

 

60 

 

Survivors – 21 

samples 

Failures – 39 samples 

 

Diffuse Large B-

Cell Lymphoma 

(DLCBL) (Shipp 

et al., 2002) 

6817 2 

                    

 

77 
DLBCL – 58 samples 

FL – 19 samples 

Leukaemia (LEU) 

(Armstrong et al., 

2002)  

12584 3 

 

 

57 

ALL - 20 samples 

MLL - 17 samples 

AML - 20 samples 

Lung Cancer 

(LUNG) 

(Bhattacharjee et 

al., 2001)  

12600 5 

 

 

203 

ADEN - 139 samples 

SQUA - 21 samples 

COID - 20 samples 

SCLC - 6 samples 

NORMAL-17samples 
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CHAPTER 5 

RESULTS AND DISCUSSION 

 

5.1 Selecting Optimum Number of Trees 

While selecting significant genes to improve classification results is the main 

objective in this study, we also need to first decide on the number of trees to grow in our 

forest. The number of trees used in our trials is limited from 100 trees to 10000 trees. 

We do not want to grow more than 10000 as we want to avoid over-fitting problems 

(Díaz-Uriarte and Alvarez de Andrés, 2006).  
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Figure 5.1: Number of Trees Grown for Each Dataset 

 

Figure 5.1 shows that the error rates for each dataset decreased as the number of 

trees built increases. 10000 trees can be seen works best for all datasets except for the 
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LEU dataset. This could be due to the vast difference between the number of genes 

(12533) and number of samples (57) in LEU dataset. 100 trees on the other hand give 

very poor results. It is therefore obvious that computing 100 trees is too few to produce 

good results. 

 

Although 1000 trees also give just as good results as compared to 10000 trees for 

all the datasets, we have chosen to use 10000 trees instead. This is because we want to 

accommodate the vast number of genes which exceeds 6000 genes in all datasets used in 

this study. Recall how the bootstrap sample is taken in the Random Forest algorithm, 

growing 1000 might give us good results but as there are more than five times of genes 

as compared to the number of trees built, some genes might not be involved in the 

computation of trees and thus results given might not be accurate although the error rate 

is low. Besides that, we also want to keep uniformity in the experiment and have 

therefore chosen to grow 10000 trees for all datasets. 

 

5.2 Results of Threshold and Filtering 

As mentioned in chapter 4, threshold and filtering are two very important steps in 

data pre-processing as it helps us to identify genes that are differentially expressed or 

really useful in the classification. This is because some genes that are collected might 

not be well expressed or are expressed only in very few samples. Threshold is essential 

as we want to standardize the genes expression values and thus have kept to using 20 for 

minimum and 16000 for maximum. Our main reason in doing so is also to alleviate any 

noise level. Table 5.1 shows the percentage of genes reduction from the original dataset. 
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These filtered datasets showed a clearer picture on how the genes are differentially 

expressed. When genes are differentially expressed, it will be easier for us to discover 

which are the noisy genes are and which are not. 

 

          

          Figure 5.2: Unfiltered Data                                     Figure 5.3: Filtered Data 
 

 

Figure 5.2 shows unfiltered lung data with 203 samples and 12600 genes and we 

can see clearly that there is no variation among the genes for all the five classes. In other 

words, the genes in the unfiltered data do not show us which genes are differentially 

expressed and which are not. Hence, it is not likely to select good predictive genes. On 

the other hand, Figure 5.3 shows a good variation with 203 samples and now 12232 

genes distributed among the five classes. The filtered data is also definitely going to 

make a better model (Twyman, 2002). 

Table 5.1: Percentage of Genes Reduction After Threshold and Filtering 

Dataset Number of genes in 
original dataset 

Number of 
genes left 

Percentage of reduction in the 
number of genes (%) 

BRAIN 7070 6413 9.3 
CNS 7070 6921 2.1 

DLBCL 6817 6679 2.0 
LEU 12584 11842 5.9 

LUNG 12600 12232 2.9 
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From table 5.1, we can see that there are a total of 657 genes which are not well 

expressed and thus have been eliminated in the BRAIN dataset. While for the CNS 

dataset, there is a total of 149 genes which have been eliminated whereas, 138, 742 and 

368 genes are eliminated for the DLBCL, LEU and LUNG datasets respectively.  

 

Of the five datasets, the BRAIN dataset has the highest percentage of genes 

reduction. This means that the BRAIN dataset has a lot of genes which are not well 

expressed and do not vary well from each other and are thus considered not able to give 

good classification model. Besides, the reason for this dataset to be having such high 

number of not well expressed genes could also be due to human error when collecting 

the data. Human error is often something that we cannot avoid in real life experiments. 

 

5.3 Results of Stair-Line Method  

5.3.1 Selecting Top 50 Genes Using Random Forest 

50 top genes were first selected from the threshold and filtered set of genes for  

all datasets. Table 5.2 shows the results of percentage of correct classifications obtained 

as compared to the classification done on the original set of genes. 

 

Table 5.2: Results for Top 50 Genes Obtained from Random Forest 

Dataset Percentage of correct classification (%) 
BRAIN 89.9 
CNS 81.7 
DLBCL 92.2 
LEU 94.7 
LUNG 82.3 
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5.3.2 Results For Top 20 Genes Selected From Highest T-value After 

Eliminating Genes With Odd Kurtosis Value  

Kurtosis values are calculated for the 50 top genes selected in section 5.3.1.  

Initial analysis found out that these genes are found to have a negative kurtosis value of -

2 or close to -2. Those genes with negative kurtosis value are also considered to have a 

platykurtic distribution. Nevertheless, while most genes have negative kurtosis values, 

there are some genes with very high negative values and some even with positive 

kurtosis values. Thus, we considered these genes as the outlier genes and have 

eliminated these outliers.  

 

The t-values for those genes are then calculated according to their classes and are 

ranked in ascending order whereby the top 20 genes for each class are selected. 

Overlapping genes are taken into account as only one gene. Table 5.3 shows the number 

of genes left for each dataset after selecting top 20 genes from each of the classes 

according to their highest t-values.  

 

Table 5.3: Number of Genes Left After Being Ranked According to Highest T-Values 

Dataset Number of genes left 
BRAIN 43 

CNS 24 
DLBCL 28 

LEU 41 
LUNG 48 
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While many other researchers chose to look at the algorithm per se to select 

important genes, we analyze the distribution of the genes in our dataset using the 

statistical measurement, kurtosis in our research. 

 

Chen et. al. (2004) described the imbalance of microarray data by looking at the 

contributing classes. In their paper, they stated two methods to reduce the effect 

imbalance caused by one dominating class. The methods are cost sensitive learning and 

sampling technique. As the number of samples for a particular class can never be 

changed, they introduced the two methods to reduce the influence of the dominating 

class in classification. While the imbalance of data is looked from the class point of 

view, the former researcher has not looked at the distribution of the genes per se unlike 

that of our research. 

 

 Recall that the main goal in this study is to reduce the effect of kurtosis found 

among genes. Our proposed method which uses the stair-line method to select important 

genes and finally running it through a modified error function in our Random Forest 

algorithm has shown improvement in the percentage of correct classification.  

 

Kurtosis which measures the peakedness of a distribution has effect on the 

classification results. Our experiment showed that the datasets that we mined are 

platykurtic. On the other hand, they have a negative kurtosis value or have a flat top 

distribution. A platykurtic distribution also means that the distribution is not normal 

which could be due to variances which are due to infrequent deviations (Kline, 2008). 

Kurtosis is not easily seen with bare eyes and can only usually be distinguished by 



 51 

calculations. Therefore, we have used a formula to calculate the kurtosis level of our 

genes. Any values of kurtosis that are non zero are considered non-normal distribution 

and therefore have their own level of kurtosis depending on the value obtained from the 

formula. 

 

 For example, Figure 5.4 and Figure 5.5 below show gene M31303_rna1_at 

extracted from the BRAIN dataset, having a negative kurtosis value. The five different 

colours shown in the graph represent five different classes as are in the BRAIN dataset. 

 

 

 

Figure 5.4: Graph of Gene M31303_rna1_at 
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Figure 5.5: Box Plot for Gene M31303_rna1_at 

   

5.3.3 Comparison Results With Other Classifier 

Table 5.4 shows the results of classifications obtained from using the modified 

Random Forest as compared to the other classifiers. A graph representation of the results 

is also shown in Figure 5.6.  

Table 5.4: Percentage of Correct Classification among Classifiers 

 RF J48 KNN4 ZeroR SMO MLP NB 

BRAIN 97.1 89.9 94.2 56.5 95.7 94.2 95.7 

CNS 84.7 71.2 76.3 64.4 88.1 76.3 84.3 

DLBCL 94.8 79.2 94.8 75.3 93.5 92.2 90.9 

LEU 98.2 89.5 93.0 35.1 94.7 96.5 94.7 

LUNG 89.7 90.6 87.2 68.5 89.7 89.2 89.2 

 

Legend for Table 5.4 and Figure 5.6:  

RF: Random Forest 

J48: Decision trees 
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KNN4: 4th Nearest Neighbour 

ZeroR: Zero R 

SMO: Support Vector Machine 

MLP: Neural Network 

NB: Naïve Bayes 

Comparison of classifiers' results
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 Figure 5.6: Comparison of Classifiers’ Results 

 

Figure 5.6 shows the resulst of the stair-line method in reducing the effect of 

kurtosis. As can be seen in the Figure 5.6, Random Forest (RF) has shown a consistently 

competitive result as compared to the other classifiers. The final top 20 genes that are 

chosen from the modified Random Forest algorithm has seen giving better results than 

before.  

 

 While the results obtained from ZeroR classifier is worst among all, it is also one 

classifier which does not use any function and simply predicts the majority class in the 
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data (Witten and Frank, 2000). This classifier actually serves well as a baseline 

comparison for the other classification methods.  

 

 As can be seen, the J48 results are also not as promising. This explains the reason 

for using Random Forest which computes a collection of trees instead of just one tree as 

computed in the J48 algorithm. The ability of computing more trees in Random Forest 

clearly gives a higher percentage in correct classification. It is also shown that the J48 

which computes only one single tree does not have the ability to perform well when 

given a larger data such as the microarray data which usually comes in huge dimension. 

 

 The KNN4 classifier here means the fourth nearest neighbour is used to classify 

the unknown object. The reason for this selection is done after Ng and Abu Hasan’s 

(2007) study. In that paper, it is shown that KNN4 works best for the datasets as 

compared to the other neighbour values ranging from one to ten. The reason to keep it 

below ten is also to avoid similar classification problem. Recall that the nearest 

neighbour classifier uses the distance function and thus unknown object will take the 

class label that is nearest to it.  Therefore, using a k that is too high will cause the 

classification to be all the same. In other words, the unknown object will take class-

value of the class that occurs most times or the dominating class. 

 

Apart from Random Forest, three other classifiers which performed rather well 

are SMO and MLP and NB. The SMO classifier used was done using the default 

polynomial kernel. The result was also proven to be of better performance in the 
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polynomial kernel compared to the radial kernel as shown in the paper by Ng and Abu 

Hasan (2007). 

 

The MLP classifier that is done here used a number of hidden layers. Also 

presented by Ng and Abu Hasan (2007) is that the percentage of correct classification 

improves with the increment of the number of hidden layers. a is equal to ½ (number of 

genes + number of samples). Nevertheless, while the higher number of hidden layers 

improves the classification results, it also takes longer time to compute especially with 

the high number of samples such as 203 as in the LUNG dataset. However, we still 

chose to use a number of hidden layers in this research as our proposed stair-line method 

had reduced the original thousands of genes to 20. And thus, our computation time is 

still manageable and at the same time, we obtained optimum results for this classifier.  

  

While the other classifiers chosen have had their parameters tuned to obtain 

optimum results, the Naïve Bayes classifier simply uses its unique posterior probability 

of classifying and does not require any fine tuning. Yet, results obtained are almost as 

good as the ones obtained by Random Forest.  

 

5.3.4 Evaluation Method 

While the parameters are tuned for the classifiers to obtain optimum results, it is 

also important to select the best evaluation method. Evaluation methods here refer to 

methods that are used to evaluate the performance of each of the classifiers. Ng and Abu 

Hasan (2008) had also determined that the usage of 9:1 cross validation or better known 
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as the 10-fold cross validation gives optimum results. This evaluation uses 90% of data 

to be trained leaving the other 10% to be tested and the procedure is repeated ten times 

until every sample has been used exactly once for testing.  

 

5.4   Main Contribution 

 Looking at the distribution of genes is not something new yet not many 

researchers are working towards this context. In this research, we have highlighted the 

idea of stair-line method in selecting important and significant genes. The reason it is 

called stair-line is because it involves three steps and not just one unlike the other 

classification schemes. While good classification accuracy is subjected to different 

definitions, in this study, a high percentage of correct classification is considered as 

good classification accuracy.  

 

 Many studies also chose to classify imbalanced data by defining the dominant 

class as what has been done by Chen et. al. (2004). Instead, our proposed stair-line 

method defines imbalanced data by looking at the genes distribution. The method not 

only reduced the effect of kurtosis, but has been proven to integrate well with Random 

Forest classifier.  

 

 This method of looking at how genes are distributed shows how important it is to 

consider genes distribution before selecting important genes. Our method of reduction of 

the dimension of microarray datasets step by step, although tedious, has proven its 

results. Using Random Forest as a classifier and a tool to pre-select the genes while 
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looking at the genes distribution shows that genes selection does not necessarily need to 

involve one algorithm per se.    
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CHAPTER 6 

CONCLUSION 

 

Microarray is a field that is being studied widely and its research purpose has 

grown from time to time. The technology of microarray has eased the task of analyzing 

genes, as it enables tens of thousands of genes to be looked at simultaneously instead of 

the conventional way of which one gene is looked at a time. Measuring gene expression 

using microarray is relevant to many areas of biology and medicine. The uses of 

microarray in the field of medicine vary and it includes DNA microarray, tissue 

microarray, protein microarray, plant microarray and many more which add to the 

reasons why microarray data is mined so widely over the past few years.  

 

 Cancer, for instance, is one of the health diseases which has benefited from the 

existence of microarray technology. Over the past few years, classifying cancer using 

microarray technology has been widely researched and results are shown to be 

optimistic. Hence, microarray data mining which uses the combination of both 

mathematical modeling and biological technology is certainly a comprehensive way not 

only to classify disease but also to examine disease outcome and discover new cancer 

subtypes. 

 

However, just like when mining other types of data, many challenges are faced 

when mining microarray data. First, microarray data is one data which contains the 

expression levels of tens of thousands of genes, thus increasing the difficulty level when 
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it comes to mining the data. Secondly, microarray data usually has a very large number 

of variables as compared to the observed samples. Thus, these challenges have led to 

data-cleaning which involved a few steps such as threshold, filtering and feature 

selection. All the mentioned steps play an important role in selecting only significant or 

useful genes to give competitive results. 

 

Classification, which allows us to look for new patterns, is the main mining 

method in this research. Classification not only allows us to classify genes but also to 

see hidden patterns especially among significant genes in order to obtain better results. 

Most classification schemes rely very much on selecting the important genes or better 

known as genes which can contribute significantly to our classification results.  

 

The very main concern in most research in classification of microarray data is to 

select important genes. Selecting important genes is important because it helps us reduce 

the dimension of the usually highly-dimensioned microarray data. Important genes are 

those with relevant information towards good analysis of the data. This is a step to be 

carried out as unclean microarray datasets contain too many genes that are noisy, 

outliers or irrelevant. There are however various ways of selecting significant genes. 

Available ones are the usual univariate and multivariate methods for selecting significant 

genes according to a certain criteria before performing any classification technique on 

the data. Nevertheless, dimension-reduction should not cause the loss of its original 

information as this can cause significant loss of information from our datasets.  
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In this research, we have proposed a stair-line method which involves three steps 

to determine important genes. We look at the statistical measurement known as kurtosis 

for sets of genes initially selected using Random Forest. Random Forest which grows a 

collection of trees has given us the option to pre-select the number of trees we choose to 

grow instead of just one in the conventional tree algorithm. Our initial test with the raw 

datasets shows that growing 10000 trees give best results for all datasets. Besides, the 

error function in the original Random Forest classifier is modified to reduce the effect of 

kurtosis. The results obtained show the effectiveness of our method as it successfully 

gave a better classification accuracy in almost all datasets used. 

 

We have also proven, in our method, that it is not impossible to manage the vast 

dimensions of microarray which contain thousands of genes by hand computations as 

these computations can be transcribed into computer algebraic system such as 

Mathematica scripts.  

 

We have stressed the importance of good classification accuracy. Good 

classification accuracies are important for building a good model which can then be used 

as a prediction model. As mentioned, good classification accuracy also depends on the 

criteria that are being looked at when selecting significant genes. The main criterion that 

is being looked at in this study is to reduce the effect of kurtosis on genes. As such, the 

mining method in this research meets the objectives of our study. We are confident that 

this research will shed a different light in feature selection as well as classification. 

Previously, very few researchers look at the distributions of genes but rather their 
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dominant class or values per se. Our research has pointed out the importance of 

considering the genes distribution while selecting significant genes. 

 

Nevertheless, we shall not deny that every proposed method has not only 

strengths but also flaws. In most cases in the real world, obtaining perfect classification 

accuracies are almost impossible. And even if there are perfect results, doubts are there 

as to whether the researches were carried out properly. As these researches are going to 

be the pioneers of the field of medicine in cancer curing, doctors themselves have to 

validate the results obtained from all the researchers’ works. This might give rise to 

another problem such as the definition of good classification accuracies. As long as there 

are different definitions of good classification accuracies, it is going to take some time 

before everyone can see eye-to-eye as to which definition works best and finally apply it 

into the field of medicine in real life.  

 

For future research purpose, more cases of microarray data can be applied to test 

the effectiveness of our method. As our research has also proven that it is essential to 

consider genes’ distributions, the kurtosis, future research work can involve the 

prediction of cancer classes on test sets with unknown class with the same type of 

distribution as well. Such predictions can also eventually link to a brighter future of 

cancer treatment. Besides that, our stair-line method can serve as a strategy to 

researchers who choose to deal with feature reduction in microarray data mining as it 

involves not just one simple step but a few steps. Moreover, this stair-line idea can also 

be used even if the researcher choose not to use Random Forest as their main classifier.     
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APPENDIX A 

 
Complete names of classes in each dataset. 
 
Brain tumor dataset: 
 

Class Complete Name 

MED Medulloblastoma 
EPD Normal Cerebellum 
MGL Malignant Glioblastoma 
RHB AT/RT (Rhabdoid) 
JPA PNET 

 
Central nervous system dataset: 
 

Class Descriptions 

Survivor Patients who survived treatment 
Failure Patients who succumbed to treatment 

 
Diffuse Large B-Cell Lymphoma dataset: 
 

Class Complete Name 

DLBCL Diffuse Large B-Cell Lymphoma 
FL Follicular Lymphoma 

  
Leukemia dataset: 
 

Class Complete Name 

ALL Acute Lymphoblastic Leukemia 
MLL Myeloid/Lymphoid or Mixed-Lineage leukemia 
AML Acute Myelogenous Leukemia 

 
Lung cancer dataset: 
 

Class Complete Name 

ADEN Lung Adenocarcinomas 
SQUA Squamous Cell Lung Carcinomas 
COID Pulmonary Carcinoids 
SCLC Small-Cell Lung Carcinomas 

NORMAL Normal Lung 
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APPENDIX B 
 
Threshold data 
 
Clear["@"] 
Directory[]; 
SetDirectory["D:\\Brain_data"]; 
DataPts=Import["pp5i_train.gr.txt","Table"]; 
 
m=7071; 
n=70; 
R=Table[0,{m},{n}]; 
i=1; 
j=1; 
Do[R[[i,j]]=DataPts[[i,j]],{i,1,m},{j,1,n}]; 
 
R//MatrixForm; 
 
i=2; 
j=2; 
Do[ 
     If[ 
       R[[i,j]]\[LessEqual]20,R[[i,j]]=20, 
       If[R[[i,j]]\[GreaterEqual]16000,R[[i,j]]=16000,R[[i,j]]=R[[i,j]] 
         ] 
       ] 
    ,{i,2,m},{j,2,n} 
    ]; 
 
R//MatrixForm; 
 
RT=Transpose[R]; 
 
Export["pp5i_train.dat",RT,"Table"]; 
RT//MatrixForm; 
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APPENDIX C 
 
Filter data 
 
Clear["@"] 
Directory[]; 
SetDirectory["D:"]; 
DataPts=Import["Brain_data\pp5i_train.norm.dat","Table"]; 
m=7071; 
n=70; 
i=1;j=1; 
R=Table[0,{m},{n}]; 
i=1; 
j=1; 
Do[R[[i,j]]=DataPts[[i,j]],{i,1,m},{j,1,n}]; 
R//MatrixForm; 
Taking submatrix to perform calculation 
Data1=Take[DataPts,{2,m},{2,n}]; 
Taking individual rows of genes 
k=1; 
S=Table[0,{k,1,m-1}]; 
Do[S[[k]]=Data1[[k,All]],{k,1,m-1}]; 
Calculating the fold difference, FD 
T=Table[0,{7070}]; 
T=N[Table[Max[S[[k]]]/Min[S[[k]]],{k,1,m-1}]]; 
Eliminating genes with FD less than 2 
U=Position[T,_?(#<2 &)]; 
V=Table[0,{m-657},{n}]; 
V=Delete[R,U]; 
Length[V] 
Export["pp5i_train.cnorm.dat",V,"Table"]; 
6414 
Directory[]; 
SetDirectory["D:\\Brain_data"]; 
Adding class  
V=Import["Brain_data\pp5i_train.cnorm.dat","Table"]; 
Length[V] 
6413 
ClassData=Import["Brain_classnames.txt","Table"]; 
W=Transpose[V]; 
W1=Table[0,{70},{Length[V]+1}]; 
Do[W1[[i,j]]=W[[i,j]],{i,1,70},{j,1,Length[V]}]; 
Do[W1[[i,Length[V]+1]]=ClassData[[i,1]],{i,1,70}]; 
Export["brainormfilcno.dat",W1,"Table"]; 
Length[W] 
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APPENDIX D 
 
Counting kurtosis 
 
Clear["@"] 
Directory[]; 
SetDirectory["D:\\Brain_data"]; 
DataPts=Import["brainormfilcno.dat","Table"]; 
Classno=Import["Brain_classno.txt","Table"]; 
<<Statistics`DescriptiveStatistics` 
<<Statistics`ContinuousDistributions` 
top50genesnew= 
    Column[DataPts,{1434,3402,2928,5232,1324,2110,4138,1565,159,2103,4778, 
        1997,3745,2818,2716,2910,4082,5601,2672,5819,490,3155,3897,5866,5865, 
        2063,489,5136,4763,413,3148,5383,1697,3681,4917,1430,5793,2707,4475, 
        5856,2532,3396,2069,4868,2093,1240,1534,4718,3844,2814}]; 
Export["top50genesnew.dat",top50genesnew,"Table"]; 
R=Import["top50genesnew.dat","Table"]; 
Dimensions[top50genesnew] 
{69,50} 
m=69;n=50; 
avg=N[Table[Mean[R]]] 
{42.9275,90.4348,264.246,299.493,95.6377,214.884,156.014,261.42,216.957,289.\ 
377,189.696,100.928,161.855,101.449,112.478,279.667,699.377,1149.54,103.696,\ 
141.957,123.812,86.3043,127.145,58.2029,51.1449,143.203,188.362,239.391,110.\ 
42,226.043,111.058,1480.59,532.855,135.362,129.145,143.928,359.406,192.333,\ 
109.652,484.159,586.696,151.768,69.3768,90.0435,54.6087,247.594,313.348,122.\ 
565,248.188,207.391} 
stdev=StandardDeviation[R]; 
\!\(K = \(valuekurtosis =  
      N[Sum[\((R[\([m, n]\)] - avg[\([n]\)])\)\^4]/\((69*stdev\^4)\) - 3]\)\) 
{4.75232,-2.06966,-2.98463,-2.99733,-2.26446,-2.99739,-2.99357,-2.98643,-2.\ 
94426,-2.99832,-2.99597,4.03317,-2.90731,-2.96994,-2.81032,-2.99855,-2.99992,-\ 
2.99994,-2.93064,-2.84424,-2.4713,-2.94417,-2.97692,9.63261,15.3555,-2.95651,-\ 
2.93581,-2.99863,-2.56875,-2.98302,-2.66422,-2.99993,-2.99596,-2.9654,-2.\ 
96146,-2.96181,-3.,-2.99675,-2.89065,-2.99704,-2.99908,-1.92594,5.4995,-2.\ 
7302,-0.772509,-2.97185,-2.9977,-2.25015,-2.99791,-2.99672} 
Omitting genes with kurtosis more than -2 
U=Position[K,_?(-2<#&)] 
L=Length[U] 
V=Table[0,{m},{n-L}]; 
Dimensions[V]; 
V=Delete[RT,U]; 
W=Transpose[V]; 
Dimensions[W] 
Export["brainclearkurtosisnew.dat",W,"Table"]; 
{{1},{12},{24},{25},{42},{43},{45}} 
7 
{69,43} 
Clear["@"] 
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m=69;n=43; 
R=Import["brainclearkurtosisnew.dat","Table"]; 
Rnew=Table[0,{m},{n+1}]; 
Do[Rnew[[i,j]]=R[[i,j]],{i,1,m},{j,1,n}]; 
Do[Rnew[[i,n+1]]=Classno[[i,1]],{i,1,m}]; 
Export["brainclearkurtosiscno1.dat",Rnew,"Table"]; 
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APPENDIX E 
 
Selecting top 50 genes with highest t-value 
 
Clear["@"] 
Directory[]; 
SetDirectory["D:\\Brain_data"]; 
R=Import["brainclearkurtosiswgenesnew.dat","Table"]; 
ClassData=Import["brain_ClassData.dat","Table"]; 
DataPts=Transpose[R]; 
Dimensions[DataPts] 
{43,70} 
m=43;n=70; 
Data1=Table[Take[DataPts,{1,m},{2,40}]];   (*MED*) 
Data2=Table[Take[DataPts,{1,m},{41,47}]]; (*MGL*) 
Data3=Table[Take[DataPts,{1,m},{48,54}]]; (*RHB*) 
Data4=Table[Take[DataPts,{1,m},{55,64}]]; (*EPD*) 
Data5=Table[Take[DataPts,{1,m},{65,70}]]; (*JPA*) 
Genesnames=Table[Take[DataPts,{1,m},{1}]]; 
\!\(NN1 = 39; NN2 = 7; NN3 = 7; NN4 = 10;  
  NN5 = 6;\[IndentingNewLine]\[IndentingNewLine] 
  \(NN11 = Plus @@ {NN2, NN3, NN4, NN5};\)\[IndentingNewLine] 
  \(NN22 = Plus @@ {NN1, NN3, NN4, NN5};\)\[IndentingNewLine] 
  \(NN33 = Plus @@ {NN1, NN2, NN4, NN5};\)\[IndentingNewLine] 
  \(NN44 = Plus @@ {NN1, NN2, NN3, NN5};\)\[IndentingNewLine] 
  \(\(NN55 = Plus @@ {NN1, NN2, NN3, NN4};\)\(\[IndentingNewLine]\) 
  \)\[IndentingNewLine] 
  \(Sumval1 =  
      Table[Apply[Plus, Data1[\([k]\)]], {k, 1, m}];\)\[IndentingNewLine] 
  \(Sumval2 =  
      Table[Apply[Plus, Data2[\([k]\)]], {k, 1, m}];\)\[IndentingNewLine] 
  \(Sumval3 =  
      Table[Apply[Plus, Data3[\([k]\)]], {k, 1, m}];\)\[IndentingNewLine] 
  \(Sumval4 =  
      Table[Apply[Plus, Data4[\([k]\)]], {k, 1, m}];\)\[IndentingNewLine] 
  \(\(Sumval5 =  
      Table[Apply[Plus, Data5[\([k]\)]], {k, 1, m}];\)\(\[IndentingNewLine]\) 
  \)\[IndentingNewLine] 
  \(Sumval11 =  
      Table[Plus @@ {Sumval2[\([k]\)], Sumval3[\([k]\)], Sumval4[\([k]\)],  
            Sumval5[\([k]\)]}, {k, 1, m}];\)\[IndentingNewLine] 
  \(Sumval22 =  
      Table[Plus @@ {Sumval2[\([k]\)], Sumval3[\([k]\)], Sumval4[\([k]\)],  
            Sumval5[\([k]\)]}, {k, 1, m}];\)\[IndentingNewLine] 
  \(Sumval33 =  
      Table[Plus @@ {Sumval2[\([k]\)], Sumval3[\([k]\)], Sumval4[\([k]\)],  
            Sumval5[\([k]\)]}, {k, 1, m}];\)\[IndentingNewLine] 
  \(Sumval44 =  
      Table[Plus @@ {Sumval2[\([k]\)], Sumval3[\([k]\)], Sumval4[\([k]\)],  
            Sumval5[\([k]\)]}, {k, 1, m}];\)\[IndentingNewLine] 
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  \(\(Sumval55 =  
      Table[Plus @@ {Sumval2[\([k]\)], Sumval3[\([k]\)], Sumval4[\([k]\)],  
            Sumval5[\([k]\)]}, {k, 1, m}];\)\(\[IndentingNewLine]\) 
  \)\[IndentingNewLine] 
  \(Sumsq1 =  
      Table[Apply[Plus, Data1[\([k]\)]\^2], {k, 1, m}];\)\[IndentingNewLine] 
  \(Sumsq2 =  
      Table[Apply[Plus, Data2[\([k]\)]\^2], {k, 1, m}];\)\[IndentingNewLine] 
  \(Sumsq3 =  
      Table[Apply[Plus, Data3[\([k]\)]\^2], {k, 1, m}];\)\[IndentingNewLine] 
  \(Sumsq4 =  
      Table[Apply[Plus, Data4[\([k]\)]\^2], {k, 1, m}];\)\[IndentingNewLine] 
  \(\(Sumsq5 =  
      Table[Apply[Plus, Data5[\([k]\)]\^2], {k, 1,  
          m}];\)\(\[IndentingNewLine]\) 
  \)\[IndentingNewLine] 
  \(Sumsq11 =  
      Table[Plus @@ {Sumsq2[\([k]\)], Sumsq3[\([k]\)], Sumsq4[\([k]\)],  
            Sumsq5[\([k]\)]}, {k, 1, m}];\)\[IndentingNewLine] 
  \(Sumsq22 =  
      Table[Plus @@ {Sumsq1[\([k]\)], Sumsq3[\([k]\)], Sumsq4[\([k]\)],  
            Sumsq5[\([k]\)]}, {k, 1, m}];\)\[IndentingNewLine] 
  \(Sumsq33 =  
      Table[Plus @@ {Sumsq1[\([k]\)], Sumsq2[\([k]\)], Sumsq4[\([k]\)],  
            Sumsq5[\([k]\)]}, {k, 1, m}];\)\[IndentingNewLine] 
  \(Sumsq44 =  
      Table[Plus @@ {Sumsq1[\([k]\)], Sumsq2[\([k]\)], Sumsq3[\([k]\)],  
            Sumsq5[\([k]\)]}, {k, 1, m}];\)\[IndentingNewLine] 
  \(\(Sumsq55 =  
      Table[Plus @@ {Sumsq1[\([k]\)], Sumsq2[\([k]\)], Sumsq3[\([k]\)],  
            Sumsq4[\([k]\)]}, {k, 1, m}];\)\(\[IndentingNewLine]\) 
  \)\[IndentingNewLine] 
  \(Avg1 = N[Table[Sumval1[\([k]\)]/NN1, {k, 1, m}]];\)\[IndentingNewLine] 
  \(Avg2 = N[Table[Sumval2[\([k]\)]/NN2, {k, 1, m}]];\)\[IndentingNewLine] 
  \(Avg3 = N[Table[Sumval3[\([k]\)]/NN3, {k, 1, m}]];\)\[IndentingNewLine] 
  \(Avg4 = N[Table[Sumval4[\([k]\)]/NN4, {k, 1, m}]];\)\[IndentingNewLine] 
  \(\(Avg5 =  
      N[Table[Sumval5[\([k]\)]/NN5, {k, 1, m}]];\)\(\[IndentingNewLine]\) 
  \)\[IndentingNewLine] 
  \(Avg11 = N[Table[Sumval11[\([k]\)]/NN11, {k, 1, m}]];\)\[IndentingNewLine] 
  \(Avg22 = N[Table[Sumval22[\([k]\)]/NN22, {k, 1, m}]];\)\[IndentingNewLine] 
  \(Avg33 = N[Table[Sumval33[\([k]\)]/NN33, {k, 1, m}]];\)\[IndentingNewLine] 
  \(Avg44 = N[Table[Sumval44[\([k]\)]/NN44, {k, 1, m}]];\)\[IndentingNewLine] 
  \(\(Avg55 =  
      N[Table[Sumval55[\([k]\)]/NN55, {k, 1, m}]];\)\(\[IndentingNewLine]\) 
  \)\[IndentingNewLine] 
  \(Stdev1 =  
      N[Table[\((\((NN1*Sumsq1[\([k]\)] - \ 
Sumval1[\([k]\)]*Sumval1[\([k]\)])\)/\((NN1*\((NN1 - 1)\))\))\)\^\(1/2\), {k,  
            1, m}]]\ ;\)\[IndentingNewLine] 
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  \(Stdev2 =  
      N[Table[\((\((NN2*Sumsq2[\([k]\)] - \ 
Sumval2[\([k]\)]*Sumval2[\([k]\)])\)/\((NN2*\((NN2 - 1)\))\))\)\^\(1/2\), {k,  
            1, m}]]\ ;\)\[IndentingNewLine] 
  \(Stdev3 =  
      N[Table[\((\((NN3*Sumsq3[\([k]\)] - \ 
Sumval3[\([k]\)]*Sumval3[\([k]\)])\)/\((NN3*\((NN3 - 1)\))\))\)\^\(1/2\), {k,  
            1, m}]]\ ;\)\[IndentingNewLine] 
  \(Stdev4 =  
      N[Table[\((\((NN4*Sumsq4[\([k]\)] - \ 
Sumval4[\([k]\)]*Sumval4[\([k]\)])\)/\((NN4*\((NN4 - 1)\))\))\)\^\(1/2\), {k,  
            1, m}]]\ ;\)\[IndentingNewLine] 
  \(\(Stdev5 =  
      N[Table[\((\((NN5*Sumsq5[\([k]\)] - \ 
Sumval5[\([k]\)]*Sumval5[\([k]\)])\)/\((NN5*\((NN5 - 1)\))\))\)\^\(1/2\), {k,  
            1, m}]]\ ;\)\(\[IndentingNewLine]\) 
  \)\[IndentingNewLine] 
  \(Stdev11 =  
      N[Table[\((\((NN11*Sumsq11[\([k]\)] - \ 
Sumval11[\([k]\)]*Sumval11[\([k]\)])\)/\((NN11*\((NN11 - 1)\))\))\)\^\(1/2\), \ 
{k, 1, m}]]\ ;\)\[IndentingNewLine] 
  \(Stdev22 =  
      N[Table[\((\((NN22*Sumsq22[\([k]\)] - \ 
Sumval22[\([k]\)]*Sumval22[\([k]\)])\)/\((NN22*\((NN22 - 1)\))\))\)\^\(1/2\), \ 
{k, 1, m}]]\ ;\)\[IndentingNewLine] 
  \(Stdev33 =  
      N[Table[\((\((NN33*Sumsq33[\([k]\)] - \ 
Sumval33[\([k]\)]*Sumval33[\([k]\)])\)/\((NN33*\((NN33 - 1)\))\))\)\^\(1/2\), \ 
{k, 1, m}]]\ ;\)\[IndentingNewLine] 
  \(Stdev44 =  
      N[Table[\((\((NN44*Sumsq44[\([k]\)] - \ 
Sumval44[\([k]\)]*Sumval44[\([k]\)])\)/\((NN44*\((NN44 - 1)\))\))\)\^\(1/2\), \ 
{k, 1, m}]]\ ;\)\[IndentingNewLine] 
  \(Stdev55 =  
      N[Table[\((\((NN11*Sumsq55[\([k]\)] - \ 
Sumval55[\([k]\)]*Sumval55[\([k]\)])\)/\((NN55*\((NN11 - 1)\))\))\)\^\(1/2\), \ 
{k, 1, m}]]\ ;\)\[IndentingNewLine] 
  \) 
T-Value 
For Class MED : 
\!\(\(TValue1 = Table[0, {m}];\)\[IndentingNewLine] 
  \(N[Table[ 
        Do[TValue1[\([k]\)] =  
            If[Stdev1[\([k]\)] \[Equal] 0 &&  
                Stdev11[\([k]\)] \[Equal]  
                  0, \(-1\), \((Avg1[\([k]\)] -  
                    Avg11[\([k]\)])\)/\((Stdev1[\([k]\)]*Stdev1[\([k]\)]/NN1 \ 
+ Stdev11[\([k]\)]*Stdev11[\([k]\)]/NN11)\)\^\(1/2\)], {k, 1,  
            m}]]];\)\[IndentingNewLine] 
  \(TValue1;\)\) 
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For Class MGL : 
\!\(\(TValue2 = Table[0, {m}];\)\[IndentingNewLine] 
  \(N[Table[ 
        Do[TValue2[\([k]\)] =  
            If[Stdev2[\([k]\)] \[Equal] 0 &&  
                Stdev22[\([k]\)] \[Equal]  
                  0, \(-1\), \((Avg2[\([k]\)] -  
                    Avg22[\([k]\)])\)/\((Stdev2[\([k]\)]*Stdev2[\([k]\)]/NN2 \ 
+ Stdev22[\([k]\)]*Stdev22[\([k]\)]/NN22)\)\^\(1/2\)], {k, 1,  
            m}]]];\)\[IndentingNewLine] 
  \(TValue2;\)\) 
For Class RHB : 
\!\(\(TValue3 = Table[0, {m}];\)\[IndentingNewLine] 
  \(N[Table[ 
        Do[TValue3[\([k]\)] =  
            If[Stdev3[\([k]\)] \[Equal] 0 &&  
                Stdev33[\([k]\)] \[Equal]  
                  0, \(-1\), \((Avg3[\([k]\)] -  
                    Avg33[\([k]\)])\)/\((Stdev3[\([k]\)]*Stdev3[\([k]\)]/NN3 \ 
+ Stdev33[\([k]\)]*Stdev33[\([k]\)]/NN33)\)\^\(1/2\)], {k, 1,  
            m}]]];\)\[IndentingNewLine] 
  \(TValue3;\)\) 
For Class EPD : 
\!\(\(TValue4 = Table[0, {m}];\)\[IndentingNewLine] 
  \(N[Table[ 
        Do[TValue4[\([k]\)] =  
            If[Stdev4[\([k]\)] \[Equal] 0 &&  
                Stdev44[\([k]\)] \[Equal]  
                  0, \(-1\), \((Avg4[\([k]\)] -  
                    Avg44[\([k]\)])\)/\((Stdev4[\([k]\)]*Stdev4[\([k]\)]/NN4 \ 
+ Stdev44[\([k]\)]*Stdev44[\([k]\)]/NN44)\)\^\(1/2\)], {k, 1,  
            m}]]];\)\[IndentingNewLine] 
  \(TValue4;\)\) 
For Class JPA : 
\!\(\(TValue5 = Table[0, {m}];\)\[IndentingNewLine] 
  \(N[Table[ 
        Do[TValue5[\([k]\)] =  
            If[Stdev5[\([k]\)] \[Equal] 0 &&  
                Stdev55[\([k]\)] \[Equal]  
                  0, \(-1\), \((Avg5[\([k]\)] -  
                    Avg55[\([k]\)])\)/\((Stdev5[\([k]\)]*Stdev5[\([k]\)]/NN5 \ 
+ Stdev55[\([k]\)]*Stdev55[\([k]\)]/NN55)\)\^\(1/2\)], {k, 1,  
            m}]]];\)\[IndentingNewLine] 
  \(TValue5;\)\) 
Class MED 
(*Top 20 TValue*) 
highest20TVal1=Ordering[TValue1,-20]; 
genes20TVal1=Table[Genesnames[[highest20TVal1]]]; 
valtop20TVal1=Table[TValue1[[highest20TVal1]]]; 
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top20TVal1=Table[0,{20},{2}]; 
Do[top20TVal1[[i,1]]=genes20TVal1[[i,1]],{i,1,20}]; 
Do[top20TVal1[[i,2]]=valtop20TVal1[[i]],{i,1,20}]; 
top20TVal1; 
 
Class MGL 
(*Top 20 TValue*) 
highest20TVal2=Ordering[TValue2,-20]; 
genes20TVal2=Table[Genesnames[[highest20TVal2]]]; 
valtop20TVal2=Table[TValue2[[highest20TVal2]]]; 
 
top20TVal2=Table[0,{20},{2}]; 
Do[top20TVal2[[i,1]]=genes20TVal2[[i,1]],{i,1,20}]; 
Do[top20TVal2[[i,2]]=valtop20TVal2[[i]],{i,1,20}]; 
top20TVal2; 
Class RHB 
(*Top 20 TValue*) 
highest20TVal3=Ordering[TValue3,-20]; 
genes20TVal3=Table[Genesnames[[highest20TVal3]]]; 
valtop20TVal3=Table[TValue3[[highest20TVal3]]]; 
 
top20TVal3=Table[0,{20},{2}]; 
Do[top20TVal3[[i,1]]=genes20TVal3[[i,1]],{i,1,20}]; 
Do[top20TVal3[[i,2]]=valtop20TVal3[[i]],{i,1,20}]; 
top20TVal3; 
Class EPD 
(*Top 20 TValue*) 
highest20TVal4=Ordering[TValue4,-20]; 
genes20TVal4=Table[Genesnames[[highest20TVal4]]]; 
valtop20TVal4=Table[TValue4[[highest20TVal4]]]; 
 
top20TVal4=Table[0,{20},{2}]; 
Do[top20TVal4[[i,1]]=genes20TVal4[[i,1]],{i,1,20}]; 
Do[top20TVal4[[i,2]]=valtop20TVal4[[i]],{i,1,20}]; 
top20TVal4; 
Class JPA 
(*Top 20 TValue*) 
highest20TVal5=Ordering[TValue5,-20]; 
genes20TVal5=Table[Genesnames[[highest20TVal5]]]; 
valtop20TVal5=Table[TValue5[[highest20TVal5]]]; 
 
top20TVal5=Table[0,{20},{2}]; 
Do[top20TVal5[[i,1]]=genes20TVal5[[i,1]],{i,1,20}]; 
Do[top20TVal5[[i,2]]=valtop20TVal5[[i]],{i,1,20}]; 
top20TVal5; 
ALL TOP 20 GENES 
Combinetop20genes= 
    
Union[genes20TVal1,genes20TVal2,genes20TVal3,genes20TVal4,genes20TVal5]; 
Length20=Length[Combinetop20genes] 
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ALL20=Table[1,{Length20}]; 
Do[ALL20[[x]]=Position[DataPts,Combinetop20genes[[x,1]]],{x,1,Length20}]; 
top20genes=Table[1,{Length20}]; 
Do[top20genes[[x]]=First[First[ALL20[[x]]]],{x,1,Length20}] 
top20=Table[1,{Length20}]; 
Do[top20[[x]]=Table[Extract[DataPts,{top20genes[[x]]}]],{x,1,Length20}] 
pp5itop20=Transpose[top20] ; 
 
pp5itop20gcol=Table[0,{n},{Length20+1}]; 
Do[pp5itop20gcol[[i,j]]=pp5itop20[[i,j]],{i,1,n},{j,1,Length20}]; 
Do[pp5itop20gcol[[i,Length20+1]]=ClassData[[i,1]],{i,1,n}]; 
Export["braintop20new.gcol.dat",pp5itop20gcol,"Table"]; 
Export["braintop20new.gcol.csv",pp5itop20gcol,"CSV"]; 
43 
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